(km/h)
$(x+5)(y-5)=x y \Leftrightarrow y-x-5=0 \Leftrightarrow y=x+5$
Traveling at a speed $10 \mathrm{~km} / \mathrm{h}$ faster than planned, he will arrive 8 hours earlier: $(x+10)(y-8)=x y \Leftrightarrow 5 y-4 x-40=0$
Substituting (1) into (2):

$$
\begin{gather*}
5(x+5)-4 x-40=5 x+25-4 x-40=x-15=0 \tag{2}\\
x=15
\end{gather*}
$$

Tom's planned speed is $\mathbf{1 5 k m} / \mathbf{h}$.

2 If the first person is a noble, then the third person is a liar, which contradicts to his statement that person before him in the queue is a liar. Then the first person is the liar.
From the statement of the second person we can say that he is a noble. Again, from the statement of the third person, the third person is a liar. Continuing, the same way the following order:
Liar, Noble, Liar, Noble, Liar, Noble, ... and so on. We can see that there are $50 \div 2=\mathbf{2 5}$ liars.

3 Let us draw a diagram. We draw a line between two letters if they played with each other.

Step 1: We draw lines between F and other letters, since F has played 6 matches.

Step 2: From Step 1 we can see that player A played his only match with F . We draw the lines between D and $\mathrm{F}, \mathrm{C}, \mathrm{B}$, since D has played 4 matches.

Step 3: From Step 2 we can see that player B has played his 2 matches with D and E. We draw lines between C and F since C has played 3 matches (2 of them with E and D).

From Step 3 we can see that all players A, B, C, D and E has played their all matches.
Therefore, F has played $\mathbf{3}$ matches.

25

(Liars)

3
(Matches)

4	

Division

MALAYSIA ASEAN SCHOOLS MATH OLYMPIADS

2013 CONTEST

4 Let the smallest angle be x. Then the other angles are $2 x, 3 x, \ldots, n x$
The sum of the angles of any convex n-gon is $(n-2) \times 180$
Therefore,

$$
x+2 x+3 x+\cdots+n x=x(1+2+3+\cdots+n)=x \frac{n(n+1)}{2}=180(n-2)
$$

Angle $n x<180^{\circ}$, since n-gon is convex.

$$
\begin{gathered}
180(n-2)=\frac{n x(n+1)}{2}<\frac{180(n+1)}{2}\left(n x<180^{\circ}\right) \\
n-2<\frac{n+1}{2} \Leftrightarrow 2 n-4<n+1 \Leftrightarrow n<5
\end{gathered}
$$

For 2 values of n there exists such convex n-gon.

5 Let us write down the terms of sequence until some pattern is found:
$6,3,10,5,16,8,4,2,1,4,2,1,4,2,1, \ldots,(4,2,1)$
Pattern $(4,2,1)$ repeats after $6^{\text {th }}$ term. Every $3 k^{\text {th }}$ term is $1,(3 k+1)^{\text {st }}$ term is 4 , and $(3 k+2)^{\text {nd }}$ term is 2 for $k \geq 3$.
Since $200=3 \times 66+2$, the $200^{\text {th }}$ term is 2 .

6 There are $6 \times 6=36$ total possible outcomes.
Winning outcomes: $(1,2) ;(2,1) ;(2,3) ;(3,2) ;(3,4) ;(4,3) ;(4,5) ;(5,4) ;(5,6)$; $(6,5)$ (10 winning outcomes).

134
Therefore, the probability that Tom wins is $\frac{10}{36}=\frac{5}{18}$.

7 Obvious solution is when $n=2 k$ is even. We can easily check that:
$(5 n)^{5 n}=\left(5 \times 2 k^{2}\right)^{5 \times 2 k}=(10 k)^{5 k \times 2}=\left[(10 k)^{5 k}\right]^{2}$ is a perfect square. There are 100 even numbers between 1 and 200.
Next answer is when $n=5 \times k^{2}$, for all positive integers k such that $1 \leq n \leq 200$.
$\left.(5 n)^{5 n}=\left(5 \times 5 \times k^{2}\right)^{\beta \times 5 \times k^{2}}=\left(5^{2} \times k^{2}\right)^{5 k^{2}}=\left[(5 k)^{2}\right] 5 k^{2}=[5 k)^{25 k^{2}}\right]$.
Since we already counted all even numbers, we only need to consider when k is odd. Hence, $k=1,3,5 \Rightarrow n=5,45,125$.
Therefore, there are $100+3=\mathbf{1 0 3}$ such numbers n.

8 There are $2006 \div(3 \times 4)=167$ multiples of 3 and $4(12=3 \times 4)$.
Also, there are
$1980 \div(3 \times 4 \times 5)=33$ multiples of $60=3 \times 4 \times 5$.
Thus, the desired answer is $167-33=\mathbf{1 3 4}$.

84

10

4027

9 Any regular 14-gon is inscribed in a circle.
Let us draw a diagonal $A H$. We can see that it is diameter of a circle as well.
Therefore,
$\angle A B H=\angle A C H=\angle A D H=\angle A E H=\angle A F H$
$=\angle A G H=90^{\circ}$.
and triangles.
$A B F, A C F, A D F, A E H, A F H$ and $A G H$ are rightangled triangles. The same way, $A N H, A M H$, $A L H, A K H, A J H, A I H$ are right-angled triangles. So, for the diagonal $A H$, there are 12 rightangled triangles.
For each such diagonals ($B I, C J, D K, E L, F M$, $G N$), there are 12 right-angled triangles.

$10 \quad a_{n+1}=a_{n}+(-1)^{n} \times n \Rightarrow a_{n+1}-a_{n}=(-1)^{n} \times n$
$a_{n}-a_{n-1}=(-1)^{n} \times(n-1)$
$a_{n-1}-a_{n-2}=(-1)^{n} \times(n-2)$
$a_{3}-a_{2}=(-1)^{n} \times 2$
$a_{2}-a_{1}=(-1)^{n} \times 1$
Adding the equations above:
$\left(a_{n}-a_{n-1}\right)+\cdots+\left(a_{2}-a_{1}\right)=a_{n}=(-1)^{n} \times 1+(-1)^{n} \times 2+\cdots+(-1)^{n} \times(n-1)$
$a_{2}=-1, a_{3}=1, a_{4}=-2, a_{5}=2, a_{6}=-3, a_{7}=3, a_{8}=-4, a_{9}=4$.
We can notice that odd terms of sequence are increasing by 1 , so that $a_{2 t+1}=t$ for all positive integers t.
Since $a_{2 \times 2013+1}=2013$, then $a_{4027}=2013$. The value of k is 4027 .

11 If the first digit is 1 , then the second digit is 2 . Same if the first digit is 3 , then the second digit is 2 . The third digit will be either 1 or 3 , in either case the fourth digit will be 2 . Thus, we have the following representation:

$$
1 \text { or } 3,2,1 \text { or } 3,2,1 \text { or } 3,2,1 \text { or } 3,2
$$

There are $2 \times 2 \times 2 \times 2 \times 2=32$ such 10 -digit numbers.
If the first digit is 2 , then the second digit is either 1 or 3 , in either case the third digit will be 2 . The fourth digit will be 1 or 3 and so on. Thus, we have the following representation:

2,1 or $3,2,1$ or $3,2,1$ or $3,2,1$ or 3
Same way, there are $2 \times 2 \times 2 \times 2 \times 2=32$ such 10-digit numbers.
Therefore, there are $32+32=\mathbf{6 4}$ such 10 -digit numbers.

Division

13

$$
\begin{aligned}
\frac{1}{2 \sqrt{1}+1 \sqrt{2}} & =\frac{1}{2 \sqrt{1}+1 \sqrt{2}} \times \frac{2 \sqrt{1}-1 \sqrt{2}}{2 \sqrt{1}-1 \sqrt{2}}=\frac{2 \sqrt{1}-1 \sqrt{2}}{(2 \sqrt{1})^{2}-(1 \sqrt{2})^{2}}=\frac{2 \sqrt{1}-1 \sqrt{2}}{4-2}=\frac{2 \sqrt{1}}{2 \times 1}-\frac{1 \sqrt{2}}{2 \times 1} \\
& =\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\frac{1}{3 \sqrt{2}+2 \sqrt{3}}=\frac{1}{3 \sqrt{2}+2 \sqrt{3}} \times \frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}-2 \sqrt{3}}=\frac{3 \sqrt{2}-2 \sqrt{3}}{(3 \sqrt{2})^{2}-(2 \sqrt{3})}=\frac{3 \sqrt{2}-2 \sqrt{3}}{3 \times 2 \times(3-1)}
$$

Same way

$$
\frac{1}{4 \sqrt{3}+3 \sqrt{4}}=\frac{\sqrt{3}}{3}-\frac{\sqrt{4}}{4}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{2 \sqrt{1}+1 \sqrt{2}}+\frac{1}{3 \sqrt{2}+2 \sqrt{3}}+\frac{1}{4 \sqrt{3}-3 \sqrt{4}}+\cdots+\frac{1}{1000 \sqrt{999}-999 \sqrt{1000}} \\
& =\left(\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right)+\left(\frac{\sqrt{3}}{3}-\frac{\sqrt{4}}{4}\right)+\cdots\left(\frac{\sqrt{2012}}{2012}-\frac{\sqrt{2013}}{2013}\right) \\
& =\frac{\sqrt{1}}{1}-\frac{\sqrt{2013}}{2013}=1-\frac{\sqrt{2013}}{2013}
\end{aligned}
$$

9

13

$$
=\frac{3 \sqrt{2}}{3 \times 2}-\frac{2 \sqrt{3}}{3 \times 2}=\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}
$$

$1-\frac{\sqrt{2013}}{2013}$

$$
\frac{1}{2013 \sqrt{2012}+2012 \sqrt{2013}}=\frac{\sqrt{2012}}{2012}-\frac{\sqrt{2013}}{2013}
$$

14

$19 \sqrt{7}$

Division

MALAYSIA ASEAN SCHOOLS
MATH OLYMPIADS

Year 3
$14\left(x+\frac{1}{x}\right)^{2}=x^{2}+2+\frac{1}{x^{2}}=7$, hence $x+\frac{1}{x}=\sqrt{7}$
$25=5^{2}=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=x^{4}+2+\frac{1}{x^{4}}$, hence $x^{4}+\frac{1}{x^{4}}=25-2=23$
$5 \sqrt{7}=\left(x^{2}+\frac{1}{x^{2}}\right)\left(x+\frac{1}{x}\right)=x^{3}+\frac{1}{x^{3}}+x+\frac{1}{x}=x^{3}+\frac{1}{x^{3}}+\sqrt{7}$, hence
$x^{3}+\frac{1}{x^{3}}=4 \sqrt{7}$.
By multiplying (1) and (2)
$23 \sqrt{7}=\left(x^{4}+\frac{1}{x^{4}}\right)\left(x+\frac{1}{x}\right)=x^{5}+\frac{1}{x^{5}}+x^{3}+\frac{1}{x^{3}}=x^{5}+\frac{1}{x^{5}}+4 \sqrt{7}$, hence
$x^{5}+\frac{1}{x^{5}}=19 \sqrt{7}$.
$1510 \times S=5 \times 2 \times S=m^{2}$, hence $C=5 \times 2 \times t^{2}$ for some t $6 \times S=2 \times 3 \times S=n^{3}$, hence $C=2^{2} \times 3^{2} \times r^{3}$ for some r $5 \times 2 \times t^{2}=S=2^{2} \times 3^{2} \times r^{3}$ or $5 \times t^{2}=S=2 \times 3^{3} \times r^{3}$
We can see that r is divisible by 5 , or r^{3} is divisible by 5^{3}.
We can also see that t^{2} is divisible 2 , thus r is divisible by 2 .
Hence, $r=5 \times 2=10$ and $S=2^{2} \times 3^{2} \times(5 \times 2)^{3}=36000$.
$36000=2^{5} \times 3^{2} \times 5^{3}$.
The number of positive factors is $(5+1) \times(2+1) \times(3+1)=\mathbf{7 2}$.

16 Let A and K be the center of circles.
Let $A B=A C=r_{1}$ be the radii of the smaller circle and $K L=K M=r_{2}$ be the radii of the bigger circle.
It is easy to notice that $A B D C$ and $K L N M$ are squares.
$D A=\sqrt{D B^{2}+A B^{2}}=\sqrt{2 r_{1}^{2}}=r_{1} \sqrt{2}$. Same way, $K N=r_{2} \sqrt{2}$.

$$
A K=r_{1}+r_{2} .
$$

$\sqrt{2}=D N=D A+A K+K N=r_{1} \sqrt{2}+r_{1}+r_{2}+r_{2} \sqrt{2}=(1+\sqrt{2})\left(r_{1}+r_{2}\right)$
Therefore, the sum of the lengths of the radii of the
circles is $\left(r_{1}+r_{2}\right)=\frac{\sqrt{2}}{1+\sqrt{2}}=2-\sqrt{2}$.

17 It is clear that $2^{5}, 12^{5}, 22^{5}, \ldots, 2012^{5}$ have the same last digit. We can see that from the following example:
Find ones digit of 12^{16} and 22^{16}.

12	144	1728
$\times 12$	$\times 12$	$\times 12$
+24	+288	+3456
12	144	1728
144	1728	20736

Thus, the last digit of 12^{16} and 22^{16} is the same as last digit of 2^{16}. are not required.

Thus, we can say that the last digit of $1^{5}+2^{5}+3^{5}+\cdots+10^{5}$ is the same as the last digits of $11^{5}+12^{5}+\cdots+20^{5}, 21^{5}+22^{5}+\cdots+30^{5}, \ldots, 2001^{5}+2002^{5}+\cdots+2010^{5}$.

The last digit of $1^{5}+2^{5}+3^{5}+\cdots+10^{5}$ is 5 .
Hence, the last digit of $1^{5}+2^{5}+3^{5}+\cdots+2010^{5}$ is $5(201 \times 5)$.
Since the last digit of $2011^{5}+2012^{5}+2013^{5}$ is 6 , the last digit of $1^{5}+2^{5}+3^{5}+\cdots+$ $2012^{5}+2013^{5}$ is $1(6+5=11)$.

Year 3

0 Multiplication by $10=5 \times 2$ gives us ' 0 ' in the end of any number. To count how many zeros does the product end, we should count the number of 5 s in the product, for example, $15=5 \times 3$ has one 5 and $25=5 \times 5$ has two 5 s.

From 1 to 1000 , there are $1000 \div 5=200$ multiples of 5 , each of them has at least one 5.
$25,50,75,100,150,175,200$ have two 5 s each.
From 1 to 1000 , there are $1000 \div 25=40$ multiples of 25 , each of them has at least two 5.
120 consist of three 5 s .
From 1 to 1000 , there are $1000 \div 125=8$ multiples of 125 , each of them has at least three 5.
625 consist of four 5 s .
Thus, there are $200+40+8+1=249$ fives.
It is easily noticed that number of 2 s is more than 5 s , i.e. we will have enough of 2 s to multiply by 5 .
Hence, the number of zeros in the end is $249(5 \times 2=10)$.

21 In any right-angled triangle median from the right angle is equal to half of the length of base side.
Therefore, $E F=B F=C F=1$.
The length of the trapezoid median $(E F)$ is the average
length of the bases: $\frac{A B+D C}{2}=E F$.

Hence, $A B+D C=2$.
Perimeter $=A D+B C+A B+D C=2+2+2=\mathbf{6}$.

Division

23 Complete rectangle $A B C D$, and let $C D$ and $A B$ intersect in R. It is clear that R is the midpoint of $P Q$ and that $P Q=\frac{1}{3} A B=\frac{1}{3} C D=\frac{2}{3} C R$. Let $\angle P R C=\theta$. Using the cosine rule in $\triangle C P R$ and $\triangle C Q R$ respectively gives

$$
\begin{gathered}
P C^{2}=C R^{2}+P R^{2}-2 C R \times P R \times \cos \theta \\
Q C^{2}=C R^{2}+Q R^{2}-2 C R \times Q R \times \cos \left(180^{\circ}-\theta\right)
\end{gathered}
$$

Adding, and remembering that $Q R=P R$ and $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$, gives $P C^{2}+Q C^{2}=2 C R^{2}+P R^{2}+Q R^{2}$

$$
\begin{aligned}
& =2\left(\frac{3}{2} P Q\right)^{2}+2\left(\frac{1}{2} P Q\right)^{2} \\
& =5 P Q^{2}=\frac{5}{9} A B^{2} \\
& =\frac{5}{9}\left(C B^{2}+C A^{2}\right) \\
& =\frac{5}{9}\left(6^{2}+9^{2}\right) \\
& =65=C P^{2}+C Q^{2}
\end{aligned}
$$

$24 x^{4}+x^{3}-10 x^{2}+x+1=0$
Divide the equation by $x^{2} \Leftrightarrow x^{2}+x-10+\frac{1}{x}+\frac{1}{x^{2}}=0$

$$
\begin{aligned}
& \Leftrightarrow\left(x^{2}+2+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)-12=0 \\
& \Leftrightarrow\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)-12=0 \\
& \Leftrightarrow\left(x+\frac{1}{x}+4\right)\left(x+\frac{1}{x}-3\right)=0 \\
& \Leftrightarrow x+\frac{1}{x}+4=0 \text { or } x+\frac{1}{x}-3=0 \\
& \Leftrightarrow x^{2}+4 x+1=0 \text { or } x^{2}-3 x+1=0 \\
& \Leftrightarrow x=-2 \pm \sqrt{3} \text { or } x=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

The positive solutions of the equation are $\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}$.

Division

From second property we get

$$
\begin{gathered}
a_{n}\left(n^{2}-1\right)=a_{1}+a_{2}+\cdots+a_{n-1} \\
a_{n-1}\left[(n-1)^{2}-1\right]=a_{1}+a_{2}+\cdots+a_{n-2}
\end{gathered}
$$

Combining both of above equations,

$$
\begin{gathered}
a_{n}\left(n^{2}-1\right)=a_{n-1}\left[(n-1)^{2}-1\right]+a_{n-1}=a_{n-1}(n-1)^{2} \\
\Leftrightarrow \frac{a_{n}}{a_{n-1}}=\frac{(n-1)^{2}}{n^{2}-1}=\frac{(n-1)^{2}}{(n+1)(n-1)}=\frac{n-1}{n+1}
\end{gathered}
$$

Same way,

$$
\frac{a_{n-1}}{a_{n-2}}=\frac{n-2}{n}, \frac{a_{n-2}}{a_{n-3}}=\frac{n-3}{n-1}, \cdots, \frac{a_{3}}{a_{2}}=\frac{a_{2}}{a_{1}}=\frac{1}{2}
$$

Therefore,

$$
\begin{aligned}
\frac{a_{n}}{a_{1}} & =\frac{a_{n}}{a_{n-1}} \times \frac{a_{n-1}}{a_{n-2}} \times \frac{a_{n-2}}{a_{n-3}} \times \cdots \times \frac{a_{3}}{a_{2}} \times \frac{a_{2}}{a_{1}} \\
& =\frac{n-1}{n+1} \times \frac{n-2}{n} \times \frac{n-3}{n-1} \times \cdots \times \frac{2}{4} \times \frac{1}{3} \\
& =\frac{2}{(n+1) n} \\
a_{n} & =a_{1} \times \frac{2}{(n+1) n}=\frac{1}{(n+1) n}
\end{aligned}
$$

The value of $a_{100}=\frac{1}{100 \times 101}=\frac{1}{10100}$.

